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SUMMARY 

Transpiration is a technique in which extra non-physical normal flows are created on an aerofoil surface 
in order to form a new streamline pattern such that the surface streamlines no longer follow the aerofoil 
surface under inviscid flow. The transpiration model is an important technique adopted in aerofoil design 
either to avoid mesh regeneration when aerofoil profile co-ordinates are adjusted or to find shape 
corrections in inverse design methods. A first-order approximation (with respect to  the normal streamline 
displacement) to the transpiration model is commonly adopted; it is shown that this can be a poor 
approximation especially in regions of high curvature. In this paper more accurate approximations are 
developed to address this problem and improve the accuracy. 

K E Y  WORDS Aerofoils Design Transpiration 

1. INTRODUCTION 

In this paper the use of a surface transpiration technique is reviewed. This technique is often 
adopted in computational fluid dynamics analysis of flow past aerofoils or turbomachinery 
blades to represent changes in the geometry without the need for mesh regeneration. In the 
model, transpiration of mass, momentum and energy through the surface is related to geometry 
changes. The technique is commonly used to represent the effects of a surface boundary layer 
on an inviscid flow and also in inverse design methods. In an inverse design problem the geometry 
of the aerofoil needs to be determined to optimize some requirements. Often this is achieved by 
specifying a target surface velocity distribution. In most approaches a sequence of profiles is 
constructed to approach the optimum through iterations. Since the aerofoil profile is modified 
after iteration, the use of a transpiration model avoids mesh regeneration that would otherwise 
be necessary. This technique has been used for turbomachinery blade design.' Apart from being 
used to simulate streamline movements, the transpiration model has also been used in calculating 
shape corrections in inverse design 

In general, however, a first-order model is usually adopted. This is known to have limitations 
in regions of high curvature, e.g. leading edges. This problem is addressed in the current paper. 
A full transpiration model is formulated and simple examples are used to demonstrate the 
function of transpiration. Various approximations are discussed and numerical results are 
presented to illustrate their accuracy. 
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2. FORMULATION O F  THE TRANSPIRATION MODEL 

Suppose an initial aerofoil profile y(s) is given. Let the new aerofoil profile f(s) be defined by 
(Figure 1) 

y (̂s) = ~(s) + <(s)n(s), s E CO, s n l ,  (1) 

where n(s) is the unit normal vector of y(s), <(s) is the normal streamline displacement and s, is 
the total arc length of y(s). Assume further that the trailing edge of y^ is fixed such that 
<(O) = ((s,,) = 0. The flow field around $(s) can be simulated by suitably transpiring fluid over 
y(s) so that the streamline pattern corresponds to the flow field around $(s). The transpiration 
velocity w,(s) over y(s) is related to the tangential velocity component w,(s) and the normal 
displacement {(s) through the conservation of mass. Consider the control volume in Figure 2 
and write m(s, n) = pw,; we have 

m(s + As, n) dn - (2) r+As) [ + h  pw, ds = 

Dividing both sides by As and taking the limit As + 0, 

Finally, using Leibnitz's rule of differentiation, 

h 

Figure 1. The parametrization 

New streamline 

streamline 

Figure 2. Control volume 
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It remains to show how to incorporate the transpiration velocity into the continuity equation. 
The continuity equation for steady flow is 

v * (pu) = 0, ( 5 )  

where u is the velocity vector. For isentropic flow a velocity potential f#J can be introduced such 
that 

(6) vf#J = u. 

Because of the isentropic assumption, the energy equation can be integrated to give 

C’ 
flul’ + = constant, 

Y - - l  
(7) 

where jj is the ratio of specific heats and c is the speed of sound. Using the isentropic relations 
(see e.g. Reference 4, p. 321) 

p = cipy (8) 

c2 = W p ,  (9) 

P = P(lV4l). (10) 

and 

where a is a constant, (7t(9) can be combined to give the relation 

As a result, substituting ( 6 )  into (5) and using (lo), (5) finally becomes a non-linear differential 
equation for f#J which is the so-called full potential equation. In order to solve the full potential 
equation for the flow field, it remains to impose suitable boundary conditions. 

For aerofoil calculations the freestream velocity is imposed in the far field. On the aerofoil 
surface the transpiration velocity is imposed as a Neumann boundary condition. The final 
boundary value problem is posed as* 

V-(pVf#J)  = 0 inR,  (1W 
af#J/an = W, on y,  (1 lb) 

d4ldn = U, - n, on y,, (1 1 4  

where R and y ,  are as defined in Figure 3 and u, n, is a prescribed normal velocity on y,. 
I t  can be rewritten using the weak formulation as 

pVf#J - V N ,  dx = pw,Ni  ds + p - N i  ds V N ,  E H1(R), s, lYZ :: 
where { N , }  denotes the test space and H’(R) denotes the Sobolev space. For a given 5 (12) can 
be used to solve for 4. If 5 = 0, then from (4) w, = 0 and it is equivalent to impose the flow 
tangency boundary condition on y. Thus solving (12) for C#J will give the flow field around y. 
However, if 5 is not zero, (12) together with (4) can be solved for 4 which corresponds to the 

* For lifting flow calculations one extra variable and one extra equation are required in the formulation. The extra 
variable is the circulation which is used to generate lift, while the extra equation is known as the Kutta condition and 
equalizes the trailing edge velocities leaving the upper and the lower surface. 
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Figure 3. The computational domain for airfoils 

flow field around 9 .  As a demonstration, two simple examples using the incompressible non-lifting 
flow around a circle are used to illustrate how the transpiration velocity functions. Instead of 
(l), the family of circles is parametrized using cylindrical polar co-ordinates as 

Denote C, to be the circle with radius r and D, to be the disc with radius r .  Since the flow is 
assumed to be incompressible, the density p in (1 1) is equal to unity throughout. The first example 
is a profile expansion problem. Suppose we pose the boundary value problem as 

V 2 4  = 0 in D,.,, 

d4Jdn = -3 cos 8 on c ~ . ~ ,  
4 + r c o s e  as r -+co ,  (16) 

where the transpiration velocity on Co., is w, = -3 cos 8. This problem can be solved 
analytically and the solution is given by 

4 = (r  + l/r) cos d. (17) 

Since the derivative 

d+/dr = (1 - l/r2) cos d (18) 

vanishes at r = 1, it implies that the unit circle is a streamline. Therefore the solution corresponds 
to the flow field around the unit circle. Equation (4) can easily be verified with 5 = 0.5 in this 
case. The velocity vectors are shown in Figure 4. It can be observed that the transpiration 
velocity effectively creates flows around that circle C,,.5 which interact with the freestream flow 
to form the streamline C,. 
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The second example is a profile contraction problem. Suppose we pose the boundary value 
problem as 

V 2 4 = 0  inD,,  (19) 

a$/dn = -0.75 cos 0 on C , ,  (20) 

g!1-+rcos8 a s r - t co ,  (21) 

where the transpiration velocity on C, is w, = -0.75 cos 8. The analytic solution of this problem 
is given by 

(22) 4 = (r + 1/4r) cos 8. 

a4/dr = (1 - 1/4r2) cos 8 

Since the derivative 

(23) 

vanishes at r = 0.5, it shows that the circle Co.5 is a streamline. Therefore the solution 
corresponds to the flow field around the circle Co,5. Equation (4) can easily be verified with 
5 = -0.5 in this case. The velocity vectors are shown in Figure 5. Here the transpiration velocity 
effectively creates continuations of the freestream flow inside the unit disc and forms the new 
streamline Co.5 inside D,. 

For compressible flows (12) must be used to solve for 4. In the analysis problem [(s) is given 
and the co-ordinates of f(s) can be calculated from (1). Therefore (12) together with (4) can be 
used to solve for 4. The tangential velocity distribution along 9 is given by 

8, = a 4 p s  I)?, (24) 

where the subscript 9 denotes evaluation along the displaced stream f(s). On the other hand, in 
the inverse problem a target velocity distribution q d  is imposed on 1; such that 

GS = q d  o n f .  (25) 
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t I _ - - -  

a - - - -  - 
Figure 5. Example 2 

The problem is to find ((s) such that (25) is satisfied when (12) is solved. There are two main 
difficulties in trying to apply (4) and (24) for calculations. First of all, it is difficult to trace the 
new streamline Q(s) in the computational domain numerically. Thus it is difficult to evaluate Gs 
using (24). Secondly, pw,, is defined by a line integral inside the domain of computation. After 
substitution into (12), the resulting equation is complicated and difficult to solve numerically. 
Therefore in the next section we shall describe some approximations to (4) and (24) so that the 
transpiration model can be applied practically. 

3. APPROXIMATIONS OF THE MODEL 

As discussed in the last section, the arbitrariness of the co-ordinates of 9 causes a major problem 
in applying the transpiration model. One way to overcome this difficulty is to use Taylor's 
expansion about the fixed initial aerofoil profile y to approximate all the terms which are not 
evaluated on y. For (24) we have 

where the right-hand side is understood to be evaluated on y ,  For (3) m(s, n) is first expanded as 

Substituting into (3) and integrating, using the definition of m(s, n), we finally have 
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where ' E d/ds. In order to use the above approximations, the normal derivatives of w, and pw,  
are required. These normal derivatives can be approximated by the tangential derivatives on y 
via conservation laws. First of all, if y is a streamline, we can derive the exact relations which 
are given by the following three lemmas. 

Lemmu 1 

Under the isentropic assumption we have 

&,/an = - K W , ,  

a(pw,) /dn = (h f2  - l ) p K W , ,  

where K is the curvature of the aerofoil surface. 

Proof: For flow over a two-dimensional curved surface the normal equilibrium equation is 
given by 

ap/dn = K P W ~ ,  (31) 

where the right-hand side is the centrifugal force exerted on the fluid particles. Under the 
isentropic assumption we have (see e.g. Reference 4, p. 321) 

p = ap;', 

c2 = ?PIP, 

(32) 

(33) 

where 7 is the ratio of the specific heats, c is the speed of sound and a is a constant. Substituting 
(32) into (31) gives 

From (7) we have 

dc2 
W ,  dw, + = 0. 

7 - 1  

Using (32) and (33), 

Using (36) in (34), 

Finally, using (32) and (33) gives 

aw,/an = - K W , .  

(35) 
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To prove (30), notice that 

a 8% a P  
- (pw,) = p - + w, - an an an 

Using (29) and (36), this becomes 

(39) 

In order to get an even higher-order approximation, we need to calculate the second-order 
normal derivative. let the streamline yE  be defined by 

Y&(S)  = Yb) - Er(s)n(s), (41) 

where n(s) is the normal vector of y(s) pointing inwardly. Because (29) is true along the streamline 
yI. in the flow field (Figure 6) for some E > 0, the limit at poins s can be taken as 

Thus the second-order normal derivative of w, can be calculated as 

a K  

and the problem reduces to calculating &/an. In order to calculate the limit 

8 K  K ,  - K 
- = lim - 
an E + O  Er ’ (44) 

the actual structure of the streamline y E  must be considered. One way to visualize yE  is to apply 
the streamline curvature given by 

a+/an = pw,. (45) 

We discretize and rearrange the terms to give 

An = vA+, (46) 

streamline -yc 

1 

- L surface streamline 7 

I9 

Figure 6. Streamlines off the surface streamline y 
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where r = l/pw,. Taking A$ = E,  we then have the streamline 

Y,(S) = Y b )  - Er(s)n(s), (47) 

which is of the form of (41). As a result, K, can be calculated and is given by the following lemma. 

Lemma 2 

Assume that y(s) is a positively oriented closed curve and is parametrized by its arc length 
s E [0, so]. Let 

Y , b )  = Y b )  - &r(s)n(s), s E LO, sol, (48) 

where n(s) is the normal vector of y(s) pointing inwardly. Denote by K,(s)  and K ( S )  the curvatures 
of y,(s) and y(s) respectively; then 

K,(s) = ~ ( s )  - cr(s)K’(s) - Er”(s) + o(E), 

where “ EE d2/ds2 and the notation O(E) means O(E)/E -+ 0 as E + 0. 

ProoJ The curvature of y,(s) is given by 

= j c ~  - ?:I(?: - Y:) - (Y: - P:)~I/JC(Y: - ~ 3 ~ 1 .  
The following relations in differential geometry for plane curves will be used: 

y’ * y‘ = 1, 

y’ - n = 0, 

n - n  = I ,  

y“ = K n ,  

n‘ = -~y’. 

The derivatives of y, are given by 

y: = (1 + ErK)y’ - Er‘n, 

y: = ~ ( 2 1 ‘ ~  + rK’)y’ + ( K  + &rK2 - Er”)n. 

Therefore the inner products can be calculated as 

y: - y: = (1 + ErrC)’ + E’r‘’, 

7: - yi = ~ ~ ( 2 r ‘ ~  + rK‘)’ + ( K  + ErK2 - Ern)’, 

y: - y: = ~ ( 1  + E ~ K ) ( ~ T ’ K  + rK’) - Er’(ic + ErK’ - Er”). 

Hence 

(7: - y:)(yf 0 y i )  - (y: - y:)’ = [I + 2 ~ r ~  + o(E)][K’ + 2 ~ r ~ ~  - 2 ~ r “ ~  + o(E)] - O(E) 

= ~ ’ ( 1  + ~ E I K  - ~ E I ” / K )  + o(E). 
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Consequently 
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K ,  = K[I + 4 ~ r ~  - ~ E T " / K  + o(~)]"'[1 + 2 . 5 ~ ~  + o ( E ) ] - ~ / ~  
= ~ ( 1  - ErK - Er"/K) + o(E). (62) 

0 

Using Lemma 2, the second-order normal derivatives can be calculated and are given by the 
following lemma. 

Lemma 3 

Using the streamline curvature method, we have 

&/an = - K ~  - r",Jr, 

a'w, r" 
an2 r 
~- - 2K2WS + - w,, 

r" 
an2 r 

~- a2(pws) - [(M' - 1)(M2 - 2) - aM2]plc2w, - (M2 - 1)p - w,, 

where a = 2 + (7 - 1)M2. 

Proof: From Lemma 2 we have 

To prove (64), notice that 

Finally, to prove (65), we have 

It remains to find a M 2 / d n .  Taking the differentials on both sides of (7),  we have 

dwf dc2 
2 y - 1  
-+y- - 0. 

Therefore 

= [ 2  + (y - 1)M2] 3 W dw, u ws - dw,. 
c c2 
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Substituting into (68), we finally have 

Remark. If y E  is parallel to y ,  then r' = 0 and (63) becomes 

aKpn = -u2. 

519 

Thus the term r"/r can be interpreted as a correction term to the assumption that the streamlines 
ye and y are parallel. 

Since the normal velocity component on y is not zero when the transpiration velocity is 
applied, y is no longer a streamline and the results derived in Lemmas 1 and 3 will not strictly 
hold. However, the results can still be used as approximations for the normal derivatives 
whenever the normal streamline displacement ( is not too large. In numerical calculations the 
energy equation of the form 

(73) 
c2 

7 - 1  
LW2 + - - - constant on y 2 s  

will be used, in which the contributions from w, are neglected, and the density will be calculated 
as p = p(w,). We shall assess the accuracy of ( 2 9 ,  (30) and (64), (65) in the next section by looking 
more closely at the error terms neglected in the approximations. 

4. ERRORS IN THE APPROXIMATE MODELS 

In proving Lemmas 1 and 3, the normal equilibrium equation (31) and the streamline curvature 
equation (45) are applied which are only true along a streamline. In this section more accurate 
conservation models will be applied to relate the normal derivatives with the tangential 
derivatives on y without assuming y to be a streamline. We summarize the results for the 
first-order normal derivatives in the following lemma. 

Lemma 4 

Under the isentropic assumption we have 

as 
2 a 

~ (pw,) = (A4 - l)pKw, + p an 

(74) 

(75) 

where K is the curvature of y. 
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Proof: The momentum equation in the normal direction is given by 

where s - n are local co-ordinates based on y (see Figure 2). Using (32) gives 

From (7) we have 

dc2 

Y - 1  
W, dw, + W ,  dw, + z- = 0. 

Thus from (36) we have 

P P dp = - -- C2 W ,  dw, - ~ C2 w, dw,. 

Using this in (77) and after some manipulations gives 

aw,/an = - K W ,  + aw,/as. 

a aw, a P  - ( p w , ) = p - +  w,-. 

To prove (75), notice that 

an an an 

Using (74) and (79), this becomes 

0 
In deriving (64) and (65), the approximations (29) and (30) are used. Therefore (64) and (65) 

will inherit the errors in approximating &,/an and a(pw,)/an. Moreover, is also used in 
the derivation. We shall assess the error in approximating &/an by (63) here. A less rigorous 
approach will be used. Consider (28) with a small transpiration mass pw,. Therefore terms of 
orders higher than one can be neglected and we have 

Integrating (83) gives 

((s) = f pw, ds 
PW, 0 
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where r(s) = l/pw,. Thus the new streamline 7 is given by 

Comparing with (47), the only difference is that E becomes a function of s here instead of a 
constant. By using the same argument used in proving Lemma 2, the curvature of P(s) is given by 

Therefore 

when 1 1 ~ 1 1  is sufficiently small. Comparing with (63), the key term --K’ is the same and the only 
difference comes from the second term. 

As derived in Lemma 4, there are a few extra terms involving w, that are not in (29) and (30). 
The same also applies to (64) and (65). However, those terms are not possible to be approximated 
accurately. Consequently, approximate models using the approximations (29), (30) and (64), (65) 
will be used throughout. In the next section we shall evaluate the approximate models 
numerically and demonstrate the accuracy of the models despite the neglected error terms. 

5. EVALUATIONS OF THE APPROXIMATE MODELS 

In this section we shall look at the performance of different approximate transpiration models 
with different truncations in (26) and (28). We shall predict the velocity distribution of a target 
profile via the mesh of an initial profile using these transpiration models and compare the results 
with the exact distribution which is generated by solving the full potential equation (12) on a 
new mesh around the target profile. The full potential equation is solved by the finite element 
method with piecewise linear trial and test functions. Denote: 

model 1 

GS = ws, 

model 2 

model 3 
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Note that the term r"/r is not included in model 3. This is because of the likely large truncation 
errors in estimating second-order derivatives with piecewise linear basis and test functions. Also, 
since the streamline curvature method has a singular point at the stagnation point, large 
numerical errors are likely to be incurred around the stagnation point and the approximation 
to &/an will not be so accurate. Thus the approximation 

& / d n = O  ifIws1<6 (92) 

should be used, where 6 is a small positive number. However, in the following test cases (92) is 
not needed. 

The first example is subsonic non-lifting flow around a cylinder. The target profile is the 
cylinder C l . l  while the initial profile is the cylinder C , .  The results are depicted in Figures 7-9. 
We can see the improvement in accuracy with the increase in terms added. 

The second example is subsonic non-lifting flow around an aerofoil. The initial aerofoil is the 
NACA 0012 and the target aerofoil (Figure 10) is generated as 

Y * ( 4  = Y(4 + S ( M 4  (93) 

Figure 7. Model I 

-1.0 0.0 -0.8 -0.4 0 .2  0.0 0.2 0.4 0.0 0.a 1.0 

Figure 8. Model 2 



TRANSPIRATION MODEL FOR AEROFOIL DESIGN 523 

I 
ae' . 

-:.O 4.8 4.8 -0:4 6.2 OlO 0 2  0:4 010 018 1:O 

Figure 9. Model 3 

2 

where ((s) is the function shown in Figure 11. After discretization, the aerofoil y is approximated 
by a polygonal curve and the curvature is calculated approximately using the parametric cubic 
spline. Both 5 and IC are defined at nodal points; for simplicity, a linear interpolation is used to 
calculate the values at the midpoints of the elements whenever they are required. The results 
are shown in Figures 12-14. The curvature effect can be seen to be significant at the leading 
edge region. This accounts for the poor performance of model 1. Also, the accuracy is improved 
when model 3 is used. 

1.4- - - Trarwplmtion 

1.2- -- 
1.0 - 
0.8 - 
0.0 - 
0.4 - 
0.2 - 

-1.0 -0.8 -0.6 -0.4 0.2 0.0 0.2 0.4 0.0 0.8 1.0 

Figure 10. Iitial and target profiles 
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- . - , . , - , - , - , . , - , - , - , 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.S 1.0 

Figure 11. Distribution of 5 

X 
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Figure 13. Model 2 

Figure 14. Model 3 
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Figure IS. Model 1 

9 

Figure 16. Model 2 
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Figure 17. Model 3 

X 

The last example is subsonic lifting flow around an aerofoil. The initial and target aerofoils 
are the same as in the second example. The results can be found in Figures 15-17. Here the 
leading edge region is more sensitive. Similar conclusions can be drawn. 

6. CONCLUDING REMARKS 

The main aim of the paper has been to discuss various approximate forms of a surface 
transpiration model commonly used to represent changes in an aerofoil geometry without the 
need for mesh regeneration. Under the assumptions of isentropic flow, using the streamline 
curvature approach, approximations to the higher-order terms have been constructed. The 
superiority in accuracy in using the approximations and the limitations of the commonly adopted 
first-order method, especially in regions of high curvature, have been demonstrated with a 
number of examples. 

The higher-order surface transpiration models introduce higher-order surface normal deriva- 
tives. In the method proposed these are related to surface tangential derivatives; these can be 
difficult to approximate accurately. It would be of interest to consider the merits of other 
approaches, e.g. the direct approximation of the normal derivatives provided by an orthogonal 
mesh and how this might be incorporated into a design algorithm. 
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